The Competitive Advantage of Cooperation
Why Nice Guys (should) Finish First

Dipl.-Inform. Volker Stöffler
Volker.Stoeffler@DB-TecKnowledge.info

DB-TecKnowledge
Dipl.-Inform. Volker Stöffler
Databases - How2Y
Agenda

• Social Darwinism vs. Evolution of Cooperation
• Selection @ Work
• Mathematics of Cooperation
 ◦ The Prisoner’s Dilemma
• Non-Zero-Sum Games
 ◦ Diversity / Barter
• Competition and Cooperation
• Prerequisites for the Evolution of Cooperation
Sources

- The Selfish Gene
 - By Richard Dawkins
 - Originally published in 1976
 - German: “Das egoistische Gen”

- The Evolution of Cooperation
 - By Robert Axelrod
 - Originally published in 1984
 - Revised Edition published in 2006
 - German: “Die Evolution der Kooperation”
Social Darwinism

• Today considered a toxic term
• More closely related to Breeding than to Evolution
 ○ Breeding works towards an arbitrarily defined goal
 ○ Evolution works towards a moving target
• Historically used to justify Racism, Euthanasia and others
• NOT this session’s subject
Evolution of Cooperation

• Based upon Observations in Nature
 ◦ Altruism in Populations of Individuals considered amoral
 • Selfishness of Altruism
 ◦ Mutualistic Symbiosis
 • Between different Species or Individuals of the same Species
 ◦ Behaviour in Competition

• Adoptable for Human Populations / Communities
 ◦ Regardless of their Exposure to Biological Evolution
Evolution vs. Social Structures

• Analogies
 ◦ Both are subject to Variation and Selection
 ◦ Changes Over Time are driven by Circumstances
 • Rewards and Penalties
 ◦ Inheritance / Genes match Tradition / Memes
Evolution vs. Social Structures

Differences

- Unconscious, Slow
 - Generations

- Abstract Arbiter
 - Filter eliminating the Unfit

- Amoral

- Conscious, Fast
 - Individuals can control their memes

- Self-made Rules
 - Filter or Teaching / Learning

- Ethics (?)
Selection @ Work

• Who are “The Fittest” in “Survival of the Fittest”
 ○ Who is “The Fittest” isn’t relevant for complex organisms
 ○ It’s about “The Fittest”, not the Strongest, Biggest, Fastest, ...
 • Diversity multiplies the Dimensions of Fitness

• Selection works upon
 ○ The Individuals of a Population
 • Fuels Selfish Behaviour
 ○ Populations competing for Resources
 • Rewards Cooperative Behaviour / Same or Different Species
 ○ Species
 • Rewards Cooperative Behaviour / Failure leads to Extinction
Mathematics of Cooperation

• The Prisoner’s Dilemma

 □ Defect looks like the better Choice
 • Regardless of the other Player’s Behaviour
 • $5 > 3, 1 > 0$
 • Rewards the Individual
 □ Cooperate provides the better total Benefit
 • $3 + 3 > 5 + 0 > 1 + 1$
 • Rewards the Population or Species

<table>
<thead>
<tr>
<th>Benefit</th>
<th>Coop.</th>
<th>Defect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coop.</td>
<td>3\3</td>
<td>0\5</td>
</tr>
<tr>
<td>Defect</td>
<td>5\0</td>
<td>1\1</td>
</tr>
</tbody>
</table>

• A Non-Zero-Sum (NZS) Game
Repeated Prisoner’s Dilemma

• Iteration changes the Game
 ○ Ongoing Reward for Mutual Cooperation
 ○ Opportunity to compensate ("penalise") previous Defect

• Individual and Total Benefit grow through Cooperation
 ○ The Individual’s Benefit grows absolutely, but not relatively compared to Peers
 ○ Pairs or groups of Cooperators benefit compared to known Defectors, if they are denied Cooperation or even Interaction

• In a Competitive Setup, Defective Behaviour continues to be rewarded unless penalised
Transformation into Social

- Define Goals, Rewards and Penalties
- Encourage / Reward Desired Actions
 - Regulation rewarding Cooperative Behaviour
 - Non-Zero-Sum
- Keep Iterations Unlimited
 - End of Iterations encourages Defective Behaviour
 - Especially if only one Actor is aware of the end
 - If there is an end, make sure all Actors know
- Act expectable and reliable
 - “Tit for Tat”
Non-Zero-Sum and Diversity

• Team Members with Different Values provide Potential for Non-Zero-Sum Interactions
 ○ Could be Win-Win- or Loose- Loose- Scenarios
 ○ Identify and prevent Loose- Loose- Scenarios

• As Team Leader: Know these Values
 ○ Learn about Team Members’ personal and cultural background
 ○ Encourage Openness

• Watch out for Compatible or Incompatible Members
NZS in History & Reality: Trade

• Barter
 ○ Value for the Buyer exceeds Value for the Seller (mutually)
 ○ E.g. trading in Salt for Grain

• Bronze
 ○ Alloy consisting of Copper and Tin
 • Main Ingredients exist in different Locations
 • Alloy’s Value exceeds the Cumulated Value of Ingredients
NZS in History & Reality: War

- Destruction is a cumulative Loss
 - Winner’s Gain is reduced by Destruction
 - Loser’s Loss is increased by Destruction
- Defence requires fewer Resources than Attack
 - Recent examples: WW I, Vietnam
 - Generally on a Tactical Level
- Cold War Overkill
 - Threat of Total Destruction eliminates any Possible Gain
NZS in History & Reality: Sports

• Doesn’t match Prisoner’s Dilemma in order to discourage “Cooperation” leading to a Draw
• Winner gains 3 Points, each Player gains 1 Point for a Draw, Loser gets no Points
 ○ Starting with a Draw, each Player has more to gain than to lose
 ○ The Cumulative Opportunity from a Draw Situation (1 Point possible Loss, 2 Points possible Gain, 2 - 1 = 1) equals the C. O. from a Losing Situation (no Risk of Loss, 1 Point possible Gain)
 ○ With Two Matches, the Cumulative Benefit of each Player winning one, losing one (3 Points) exceeds the C. B. of two Draws (2)
NZS in History & Reality: Poker

- Counting Chips, it’s a Zero-Sum Game
- However, the Impact of losing 5 Chips out of 10 is more dramatic than the Impact of losing (or winning) 5 Chips while holding a Stack of 100
- Even more Drama: **All-In**
 - Betting 10 Chips out of 10
 - The All-In Player is Out of the Game when losing
NZS in History & Reality: Traffic

• Traffic Congestion behind a Slow Vehicle
 ◦ The Slow Vehicle can give way at a Lay-By, loosing Time
 ◦ Faster Vehicles behind benefit

• Keep Crossroads Clear
 ◦ Failure may result in Mutual Lock or even Deadlock
Cooperation and Competition

• Cooperation does not exclude Competition
 ○ In Fact, very serious Competition is essential for Evolution
 “Mother Nature has Sharp Teeth and Bloody Talons”
• The Important Part is the Balance between Benefit and Loss
 ○ Social Equivalent is “Fair Play”
• To encourage Cooperative Behaviour, set up Rules
 ○ Deregulation usually fails to encourage Cooperation
Axelrod’s Tournament: Setup

• Call for Algorithms playing Prisoner’s Dilemma
 ○ Input is the Partner’s Previous Actions
• Each Combination of Algorithms is evaluated
 ○ Repeated Execution
• Algorithms are rated for their Total Score
And the Winner is... **Tit for Tat**

- Starts with Cooperation, continues by copying Partner’s previous Action
- **Characteristics**
 - Nice: Doesn’t Defect First
 - Reciprocal: Rewards Cooperation, Penalises Defect
 - Not Envious: Never Scores Better than Rival / Partner
 - Forgiving: Allows Compensation of Previous Defect
 - Reliable: Simple
 - Simplest Algorithm in this Tournament
Soft Spots in Axelrod’s Setup

- A Different Population of Algorithms may produce a Different Result
- Only One “Generation”
 - No Inheritance or Reproduction
- Only One Instance per Algorithm
- Players can’t choose their Interaction Partner / Rival
- No External Selection or Resource Limits
 - No Competition between Individuals
Requirements for Evol. of Coop.

- Repeated Prisoner’s Dilemma Style Interaction
- Actors evaluate and memorise the previous Interaction Result
- Sufficient Number / Percentage of Cooperative Actors
- Actors recognise each other
- Actors can choose their Interaction Partner
- Reciprocity / Mutuality
Transformation into Social (1)

- Repeated Interaction
 - Long Term Engagements and Team Structures
- Actors evaluate and memorise the previous Interaction Result
 - Transparency
 - Awareness of own and Partner’s Values
- Sufficient Number / Percentage of Cooperative Actors
 - Staffing, Team Mix
Transformation into Social (2)

- Actors recognise each other
 - Limits Community to a Maximum Size
 - ID Tags and Reputation Systems push the Limit
- Actors can choose their Interaction Partner
 - Minimum Community Size required
 - Balance of Power
- Reciprocity / Mutuality
 - Staffing, Team Mix, Team Structure
 - Self Confidence
Where Cooperation Works

- Mutual Insurance Societies e.g. between local Farmers
- Small Teams / Peer Groups
 - Buddy System as the smallest Team
 - Hierarchy breaks down Large Units, like in a Roman Legion
 - Legion (~5000) - Cohort - Centuria - Contubernium (8)
 - Soldiers from a Contubernium share e.g. Mule, Tent & Fireplace
 - Discipline was enforced through Contubernium
 - Collective Punishment in case of Individual Failure
 - Decimation in case of Large Scale Mutiny
 - Green Beard Effect
- **SAP Community Network!**
Where Y Cooperation Fails

• Individual Traffic, Public Parking
 ○ Many Actors, Lack of Recognition, Loss is distributed.
 ○ Enormous Loss in case of Mutual Defect (Collision)
 ○ Different Behaviour in Public vs. Designated Resident Parking

• Very Large Communities, Public Forums on Social Media
 ○ Many Actors, Lack of Recognition
 ○ High Reward and Low or no Penalty for Defect
Lessons Learned

• Encouraging internal Cooperation strengthens external Competitiveness
 ○ More efficient Use of Resources

• Defective internal Competition weakens Competitiveness
 ○ Waste of Resources and Energy

• Characteristics of Successful Cooperative Behaviour
 ○ Nice, Not Envious
 ○ Reciprocal
 ✷ Penalty and Compensation for previous Defect
 ○ Forgiving, Reliable
Lessons Learned

• Measures and Rules to encourage Cooperation
 ○ Act Foreseeable and Reliable
 ○ Communicate Values and set up for Transparency
 ○ Reward Cooperative and penalise Defective Behaviour
 ○ Strengthen Individuals Self Confidence
 ○ Consider Team Size and Character Mix
Questions / Decisions

As Individual
• Do I want to Tit-for-Tat?
• What do I consider Coop / Defect
• What does my peer consider Coop / Defect?
• How can I communicate in case of Defect
 ○ peer-to-peer, via arbiter

As Team [Leader]
• Do we want members to Tit-for-Tat?
• Do we have a common view of Coop / Defect?
• How do we deal with members acting defective?
Food for Thought: Traffic

• When merging Lanes, the “Fair” / Cooperative Approach is to preserve the Sequence of Vehicles

• Merging 2 Lanes to 1
 ◦ Every Driver knows the Late Merge / Zipper Method

• What about Merging 3 Lanes to 2?
 ◦ Hint & Solution at End of Deck
More Sources and References

• The Situation Is Hopeless But Not Serious ("Anleitung zum Unglücklichsein")
 ○ By Paul Watzlawick
 ○ Chapter 14 about Zero-Sum and Non-Zero-Sum Games
• Collapse ("Kollaps")
 ○ By Jared Diamond
• Nice Guys Finish First
 ○ BBC Cast with Richard Dawkins
 ○ e.g. https://www.dailymotion.com/video/x1jprgh
Thank you!

Contact information:

Volker Stöffler
DB-TecKnowledge
Independant Consultant
Germany – 70771 Leinfelden-Echterdingen
mailto: Volker.Stoeffler@DB-TecKnowledge.info
http://scn.sap.com/people/volker.stoeffler
Merging 3 Lanes to 2: Hint

• Imagine it’s the Middle Lane that ends
• Then find out how to achieve the same Result if one of the Outer Lanes ends
Merging 3 Lanes to 2: Solution

Source: https://en.wikipedia.org/wiki/Merge_(traffic)
Every Other Car from the Middle Lane moves between 2 Blocks of 2 Cars from the remaining Outer Lane. Every remaining Car in the Middle Lane allows 2 Cars from the ending Outer Lane into the Gap created.